Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Biol Chem ; 299(7): 104857, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230387

RESUMO

The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.


Assuntos
Doença de Chagas , Parasitos , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Dasatinibe , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Proliferação de Células , Mamíferos/metabolismo
2.
NPJ Vaccines ; 8(1): 63, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185599

RESUMO

Human infection with the protozoan parasite Trypanosoma cruzi causes Chagas disease for which there are no prophylactic vaccines. Cyclophilin 19 is a secreted cis-trans peptidyl isomerase expressed in all life stages of Trypanosoma cruzi. This protein in the insect stage leads to the inactivation of insect anti-parasitic peptides and parasite transformation whereas in the intracellular amastigotes it participates in generating ROS promoting the growth of parasites. We have generated a parasite mutant with depleted expression of Cyp19 by removal of 2 of 3 genes encoding this protein using double allelic homologous recombination. The mutant parasite line failed to replicate when inoculated into host cells in vitro or in mice indicating that Cyp19 is critical for infectivity. The mutant parasite line also fails to replicate in or cause clinical disease in immuno-deficient mice further validating their lack of virulence. Repeated inoculation of mutant parasites into immuno-competent mice elicits parasite-specific trypanolytic antibodies and a Th-1 biased immune response and challenge of mutant immunized mice with virulent wild-type parasites is 100% effective at preventing death from acute disease. These results suggest that parasite Cyp19 may be candidate for small molecule drug targeting and that the mutant parasite line may warrant further immunization studies for prevention of Chagas disease.

3.
Front Cell Infect Microbiol ; 13: 1098457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814444

RESUMO

Introduction: Chagas cardiomyopathy, a disease caused by Trypanosoma cruzi (T. cruzi) infection, is a major contributor to heart failure in Latin America. There are significant gaps in our understanding of the mechanism for infection of human cardiomyocytes, the pathways activated during the acute phase of the disease, and the molecular changes that lead to the progression of cardiomyopathy. Methods: To investigate the effects of T. cruzi on human cardiomyocytes during infection, we infected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) with the parasite and analyzed cellular, molecular, and metabolic responses at 3 hours, 24 hours, and 48 hours post infection (hpi) using transcriptomics (RNAseq), proteomics (LC-MS), and metabolomics (GC-MS and Seahorse) analyses. Results: Analyses of multiomic data revealed that cardiomyocyte infection caused a rapid increase in genes and proteins related to activation innate and adaptive immune systems and pathways, including alpha and gamma interferons, HIF-1α signaling, and glycolysis. These responses resemble prototypic responses observed in pathogen-activated immune cells. Infection also caused an activation of glycolysis that was dependent on HIF-1α signaling. Using gene editing and pharmacological inhibitors, we found that T. cruzi uptake was mediated in part by the glucose-facilitated transporter GLUT4 and that the attenuation of glycolysis, HIF-1α activation, or GLUT4 expression decreased T. cruzi infection. In contrast, pre-activation of pro-inflammatory immune responses with LPS resulted in increased infection rates. Conclusion: These findings suggest that T. cruzi exploits a HIF-1α-dependent, cardiomyocyte-intrinsic stress-response activation of glycolysis to promote intracellular infection and replication. These chronic immuno-metabolic responses by cardiomyocytes promote dysfunction, cell death, and the emergence of cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Miócitos Cardíacos/metabolismo , Doença de Chagas/parasitologia , Imunidade Inata
4.
Mem Inst Oswaldo Cruz ; 117: e200501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613156

RESUMO

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. There is an urgent need for safe, effective, and accessible new treatments since the currently approved drugs have serious limitations. Drug development for Chagas disease has historically been hampered by the complexity of the disease, critical knowledge gaps, and lack of coordinated R&D efforts. This review covers some of the translational challenges associated with the progression of new chemical entities from preclinical to clinical phases of development, and discusses how recent technological advances might allow the research community to answer key questions relevant to the disease and to overcome hurdles in R&D for Chagas disease.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Doenças Negligenciadas/tratamento farmacológico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
5.
mBio ; 13(1): e0347821, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073735

RESUMO

Trans-sialidases (TS) are unusual enzymes present on the surface of Trypanosoma cruzi, the causative agent of Chagas disease. Encoded by the largest gene family in the T. cruzi genome, only few members of the TS family have catalytic activity. Active trans-sialidases (aTS) are responsible for transferring sialic acid from host glycoconjugates to mucins, also present on the parasite surface. The existence of several copies of TS genes has impaired the use of reverse genetics to study this highly polymorphic gene family. Using CRISPR-Cas9, we generated aTS knockout cell lines displaying undetectable levels of TS activity, as shown by sialylation assays and labeling with antibodies that recognize sialic acid-containing mucins. In vitro infection assays showed that disruption of aTS genes does not affect the parasite's capacity to invade cells or to escape from the parasitophorous vacuole but resulted in impaired differentiation of amastigotes into trypomastigotes and parasite egress from the cell. When inoculated into mice, aTS mutants were unable to establish infection even in the highly susceptible gamma interferon (IFN-γ) knockout mice. Mice immunized with aTS mutants were fully protected against a challenge infection with the virulent T. cruzi Y strain. Altogether, our results confirmed the role of aTS as a T. cruzi virulence factor and indicated that aTS play a major role during the late stages of intracellular development and parasite egress. Notably, mutants lacking TS activity are completely avirulent in animal models of infection and may be used as a live attenuated vaccine against Chagas disease. IMPORTANCE Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects approximately 6 to 8 million people and for which there is no effective treatment or vaccine. The parasite expresses a family of surface proteins, named trans-sialidases, responsible for transferring sialic acid from host glycoconjugates to parasite mucins. Although recognized as a main virulence factor, the multiple roles of these proteins during infection have not yet been fully characterized, mainly because the presence of several copies of aTS genes has impaired their study using reverse genetics. By applying CRISPR-Cas9, we generated aTS knockout parasites and showed that, although aTS parasite mutants were able to infect cells in vitro, they have an impaired capacity to egress from the infected cell. Importantly, aTS mutants lost the ability to cause infection in vivo but provided full protection against a challenge infection with a virulent strain.


Assuntos
Doença de Chagas , Parasitos , Trypanosoma cruzi , Animais , Camundongos , Trypanosoma cruzi/genética , Parasitos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Glicoproteínas/metabolismo , Doença de Chagas/parasitologia , Neuraminidase , Mucinas/metabolismo , Fatores de Virulência , Mamíferos/metabolismo
6.
Mem. Inst. Oswaldo Cruz ; 117: e200501, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1375909

RESUMO

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. There is an urgent need for safe, effective, and accessible new treatments since the currently approved drugs have serious limitations. Drug development for Chagas disease has historically been hampered by the complexity of the disease, critical knowledge gaps, and lack of coordinated R&D efforts. This review covers some of the translational challenges associated with the progression of new chemical entities from preclinical to clinical phases of development, and discusses how recent technological advances might allow the research community to answer key questions relevant to the disease and to overcome hurdles in R&D for Chagas disease.

7.
Front Cell Infect Microbiol ; 11: 773410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858880

RESUMO

Trypanosoma cruzi faces a variety of environmental scenarios during its life cycle, which include changes in the redox environment that requires a fine regulation of a complex antioxidant arsenal of enzymes. Reversible posttranslational modifications, as lysine acetylation, are a fast and economical way for cells to react to environmental conditions. Recently, we found that the main antioxidant enzymes, including the mitochondrial superoxide dismutase A (TcSODA) are acetylated in T. cruzi, suggesting that protein acetylation could participate in the oxidative stress response in T. cruzi. Therefore, we investigated whether mitochondrial lysine deacetylase TcSir2rp3 was involved in the activity control of TcSODA. We observed an increased resistance to hydrogen peroxide and menadione in parasites overexpressing TcSir2rp3. Increased resistance was also found for benznidazole and nifurtimox, known to induce reactive oxidative and nitrosactive species in the parasite, associated to that a reduction in the ROS levels was observed. To better understand the way TcSir2rp3 could contributes to oxidative stress response, we analyzed the expression of TcSODA in the TcSir2rp3 overexpressing parasites and did not detect any increase in protein levels of this enzyme. However, we found that these parasites presented higher levels of superoxide dismutase activity, and also that TcSir2rp3 and TcSODA interacts in vivo. Knowing that TcSODA is acetylated at lysine residues K44 and K97, and that K97 is located at a similar region in the protein structure as K68 in human manganese superoxide dismutase (MnSOD), responsible for regulating MnSOD activity, we generated mutated versions of TcSODA at K44 and K97 and found that replacing K97 by glutamine, which mimics an acetylated lysine, negatively affects the enzyme activity in vitro. By using molecular dynamics approaches, we revealed that acetylation of K97 induces specific conformational changes in TcSODA with respect to hydrogen-bonding pattern to neighbor residues, suggesting a key participation of this residue to modulate the affinity to O2- . Taken together, our results showed for the first time the involvement of lysine acetylation in the maintenance of homeostatic redox state in trypanosomatids, contributing to the understanding of mechanisms used by T. cruzi to progress during the infection.


Assuntos
Mitocôndrias/enzimologia , Estresse Oxidativo , Sirtuínas , Trypanosoma cruzi , Oxirredução , Sirtuínas/genética , Sirtuínas/metabolismo , Superóxido Dismutase/genética , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética
8.
J Immunol Res ; 2021: 2939693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604391

RESUMO

All extracellular forms of Trypanosoma cruzi, the causative agent of Chagas disease, release extracellular vesicles (EVs) containing major surface molecules of the parasite. EV release depends on several mechanisms (internal and external). However, most of the environmental conditions affecting this phenomenon are still unknown. In this work, we evaluated EV release under different stress conditions and their ability to be internalized by the parasites. In addition, we investigated whether the release conditions would affect their immunomodulatory properties in preactivated bone marrow-derived macrophages (BMDM). Sodium azide and methyl-cyclo-ß-dextrin (CDB) reduced EV release, indicating that this phenomenon relies on membrane organization. EV release was increased at low temperatures (4°C) and acidic conditions (pH 5.0). Under this pH, trypomastigotes differentiated into amastigotes. EVs are rapidly liberated and reabsorbed by the trypomastigotes in a concentration-dependent manner. Nitrosative stress caused by sodium nitrite in acid medium or S-nitrosoglutathione also stimulated the secretion of EVs. EVs released under all stress conditions also maintained their proinflammatory activity and increased the expression of iNOS, Arg 1, IL-12, and IL-23 genes in IFN-γ and LPS preactivated BMDM. In conclusion, our results suggest a budding mechanism of release, dependent on the membrane structure and parasite integrity. Stress conditions did not affect functional properties of EVs during interaction with host cells. EV release variations under stress conditions may be a physiological response against environmental changes.


Assuntos
Vesículas Extracelulares/imunologia , Macrófagos/imunologia , Estresse Fisiológico/imunologia , Trypanosoma cruzi/imunologia , Animais , Linhagem Celular , Células Cultivadas , Temperatura Baixa , Vesículas Extracelulares/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Concentração de Íons de Hidrogênio , Imunidade/genética , Imunidade/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nitrito de Sódio/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/fisiologia
9.
Cell Microbiol ; 23(4): e13295, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33222354

RESUMO

Infection by Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, depends on reactive oxygen species (ROS), which has been described to induce parasite proliferation in mammalian host cells. It is unknown how the parasite manages to increase host ROS levels. Here, we found that intracellular T. cruzi forms release in the host cytosol its major cyclophilin of 19 kDa (TcCyp19). Parasites depleted of TcCyp19 by using CRISPR/Cas9 gene replacement proliferate inefficiently and fail to increase ROS, compared to wild type parasites or parasites with restored TcCyp19 gene expression. Expression of TcCyp19 in L6 rat myoblast increased ROS levels and restored the proliferation of TcCyp19 depleted parasites. These events could also be inhibited by cyclosporin A, (a cyclophilin inhibitor), and by polyethylene glycol-linked to antioxidant enzymes. TcCyp19 was found more concentrated in the membrane leading edges of the host cells in regions that also accumulate phosphorylated p47phox , as observed to the endogenous cyclophilin A, suggesting some mechanisms involved with the translocation process of the regulatory subunit p47phox in the activation of the NADPH oxidase enzymatic complex. We concluded that cyclophilin released in the host cell cytosol by T. cruzi mediates the increase of ROS, required to boost parasite proliferation in mammalian hosts.


Assuntos
Ciclofilinas/metabolismo , Citosol/metabolismo , Interações Hospedeiro-Parasita , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Animais , Ciclofilinas/biossíntese , Ciclofilinas/genética , Citosol/química , Mioblastos/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Ratos , Trypanosoma cruzi/genética
10.
Front Cell Infect Microbiol ; 10: 602502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381465

RESUMO

Trypanosoma cruzi, Trypanosoma brucei and Leishmania (Trypanosomatidae: Kinetoplastida) are parasitic protozoan causing Chagas disease, African Trypanosomiasis and Leishmaniases worldwide. They are vector borne diseases transmitted by triatomine bugs, Tsetse fly, and sand flies, respectively. Those diseases cause enormous economic losses and morbidity affecting not only rural and poverty areas but are also spreading to urban areas. During the parasite-host interaction, those organisms release extracellular vesicles (EVs) that are crucial for the immunomodulatory events triggered by the parasites. EVs are involved in cell-cell communication and can act as important pro-inflammatory mediators. Therefore, interface between EVs and host immune responses are crucial for the immunopathological events that those diseases exhibit. Additionally, EVs from these organisms have a role in the invertebrate hosts digestive tracts prior to parasite transmission. This review summarizes the available data on how EVs from those medically important trypanosomatids affect their interaction with vertebrate and invertebrate hosts.


Assuntos
Doença de Chagas , Vesículas Extracelulares , Trypanosoma brucei brucei , Trypanosoma cruzi , Animais , Comunicação Celular
11.
Int J Parasitol Drugs Drug Resist ; 13: 107-120, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32688218

RESUMO

Ergosterol biosynthesis inhibitors, such as posaconazole and ravuconazole, have been proposed as drug candidates for Chagas disease, a neglected infectious tropical disease caused by the protozoan parasite Trypanosoma cruzi. To understand better the mechanism of action and resistance to these inhibitors, a clone of the T. cruzi Y strain was cultured under intermittent and increasing concentrations of ravuconazole until phenotypic stability was achieved. The ravuconazole-selected clone exhibited loss in fitness in vitro when compared to the wild-type parental clone, as observed in reduced invasion capacity and slowed population growth in both mammalian and insect stages of the parasite. In drug activity assays, the resistant clone was above 300-fold more tolerant to ravuconazole than the sensitive parental clone, when the half-maximum effective concentration (EC50) was considered. The resistant clones also showed reduced virulence in vivo, when compared to parental sensitive clones. Cross-resistance to posaconazole and other CYP51 inhibitors, but not to other antichagasic drugs that act independently of CYP51, such as benznidazole and nifurtimox, was also observed. A novel amino acid residue change, T297M, was found in the TcCYP51 gene in the resistant but not in the sensitive clones. The structural effects of the T297M, and of the previously described P355S residue changes, were modelled to understand their impact on interaction with CYP51 inhibitors.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Resistência a Múltiplos Medicamentos/genética , Esterol 14-Desmetilase/genética , Trypanosoma cruzi , Animais , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Genes de Protozoários , Mutação , Nitroimidazóis/farmacologia , Tiazóis/farmacologia , Triazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento
12.
Cell Microbiol ; 22(11): e13243, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32597009

RESUMO

Trypanosomatids regulate gene expression mainly at the post-transcriptional level through processing, exporting and stabilising mRNA and control of translation. In most eukaryotes, protein synthesis is regulated by phosphorylation of eukaryotic initiation factor 2 (eIF2) at serine 51. Phosphorylation halts overall translation by decreasing availability of initiator tRNAmet to form translating ribosomes. In trypanosomatids, the N-terminus of eIF2α is extended with threonine 169 the homologous phosphorylated residue. Here, we evaluated whether eIF2α phosphorylation varies during the Trypanosoma cruzi life cycle, the etiological agent of Chagas' disease. Total levels of eIF2α are diminished in infective and non-replicative trypomastigotes compared with proliferative forms from the intestine of the insect vector or amastigotes from mammalian cells, consistent with decreased protein synthesis reported in infective forms. eIF2α phosphorylation increases in proliferative intracellular forms prior to differentiation into trypomastigotes. Parasites overexpressing eIF2αT169A or with an endogenous CRISPR/Cas9-generated eIF2αT169A mutation were created and analysis revealed alterations to the proteome, largely unrelated to the presence of µORF in epimastigotes. eIF2αT169A mutant parasites produced fewer trypomastigotes with lower infectivity than wild type, with increased levels of sialylated mucins and oligomannose glycoproteins, and decreased galactofuranose epitopes and the surface protease GP63 on the cell surface. We conclude that eIF2α expression and phosphorylation levels affect proteins relevant for intracellular progression of T. cruzi.


Assuntos
Doença de Chagas/parasitologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/genética , Regulação da Expressão Gênica , Humanos , Estágios do Ciclo de Vida , Mutação , Parasitemia , Fosforilação , Biossíntese de Proteínas , Proteoma/metabolismo , Proteínas de Protozoários/análise , Proteínas de Protozoários/biossíntese , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/patogenicidade , Virulência
13.
Int J Mol Sci ; 21(10)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455951

RESUMO

Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi, affecting more than 7 million people in the world. Benznidazole and nifurtimox are the only drugs available for treatment and in addition to causing several side effects, are only satisfactory in the acute phase of the disease. Sirtuins are NAD+-dependent deacetylases involved in several biological processes, which have become drug target candidates in various disease settings. T. cruzi presents two sirtuins, one cytosolic (TcSir2rp1) and the latter mitochondrial (TcSir2rp3). Here, we characterized the effects of human sirtuin inhibitors against T. cruzi sirtuins as an initial approach to develop specific parasite inhibitors. We found that, of 33 compounds tested, two inhibited TcSir2rp1 (15 and 17), while other five inhibited TcSir2rp3 (8, 12, 13, 30, and 32), indicating that specific inhibitors can be devised for each one of the enzymes. Furthermore, all inhibiting compounds prevented parasite proliferation in cultured mammalian cells. When combining the most effective inhibitors with benznidazole at least two compounds, 17 and 32, demonstrated synergistic effects. Altogether, these results support the importance of exploring T. cruzi sirtuins as drug targets and provide key elements to develop specific inhibitors for these enzymes as potential targets for Chagas disease treatment.


Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/parasitologia , Histona Desacetilases do Grupo III/antagonistas & inibidores , Concentração Inibidora 50 , Macaca mulatta , Simulação de Acoplamento Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuínas/química , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-32373547

RESUMO

The integrated stress response in eukaryotic cells is an orchestrated pathway that leads to eukaryotic Initiation Factor 2 alpha subunit (eIF2α) phosphorylation at ser51 and ultimately activates pathways to mitigate cellular damages. Three putative kinases (Tck1, Tck2, and Tck3) are found in the Trypanosoma cruzi genome, the flagellated parasite that causes Chagas disease. These kinases present similarities to other eukaryotic eIF2α kinases, exhibiting a typical insertion loop in the kinase domain of the protein. We found that this insertion loop is conserved among kinase 1 of several T. cruzi strains but differs among various Kinetoplastidae species, suggesting unique roles. Kinase 1 is orthologous of GCN2 of several eukaryotes, which have been implicated in the eIF2α ser51 phosphorylation in situations that mainly affects the nutrients levels. Therefore, we further investigated the responses to nutritional stress of T. cruzi devoid of TcK1 generated by CRISPR/Cas9 gene replacement. In nutrient-rich conditions, replicative T. cruzi epimastigotes depleted of TcK1 proliferate as wild type cells but showed increased levels of polysomes relative to monosomes. Upon nutritional deprivation, the polysomes decreased more than in TcK1 depleted line. However, eIF2α is still phosphorylated in TcK1 depleted line, as in wild type parasites. eIF2α phosphorylation increased at longer incubations times, but KO parasites showed less accumulation of ribonucleoprotein granules containing ATP-dependent RNA helicase involved in mRNA turnover (DHH1) and Poly-A binding protein (PABP1). Additionally, the formation of metacyclic-trypomastigotes is increased in the absence of Tck1 compared to controls. These metacyclics, as well as tissue culture trypomastigotes derived from the TcK1 knockout line, were less infective to mammalian host cells, although replicated faster inside mammalian cells. These results indicate that GCN2-like kinase in T. cruzi affects stress granule formation, independently of eIF2α phosphorylation upon nutrient deprivation. It also modulates the fate of the parasites during differentiation, invasion, and intracellular proliferation.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Fator de Iniciação 2 em Eucariotos , Fosforilação , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , eIF-2 Quinase/metabolismo
15.
Biochem J ; 477(9): 1733-1744, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32329788

RESUMO

Post-translational modifications provide suitable mechanisms for cellular adaptation to environmental changes. Lysine acetylation is one of these modifications and occurs with the addition of an acetyl group to Nε-amino chain of this residue, eliminating its positive charge. Recently, we found distinct acetylation profiles of procyclic and bloodstream forms of Trypanosoma brucei, the agent of African Trypanosomiasis. Interestingly, glycolytic enzymes were more acetylated in the procyclic, which develops in insects and uses oxidative phosphorylation to obtain energy, compared with the bloodstream form, whose main source of energy is glycolysis. Here, we investigated whether acetylation regulates the T. brucei fructose 1,6-bisphosphate aldolase. We found that aldolase activity was reduced in procyclic parasites cultivated in the absence of glucose and partial recovered by in vitro deacetylation. Similarly, acetylation of protein extracts from procyclics cultivated in glucose-rich medium, caused a reduction in the aldolase activity. In addition, aldolase acetylation levels were higher in procyclics cultivated in the absence of glucose compared with those cultivated in the presence of glucose. To further confirm the role of acetylation, lysine residues near the catalytic site were substituted by glutamine in recombinant T. brucei aldolase. These replacements, especially K157, inhibited enzymatic activity, changed the electrostatic surface potential, decrease substrate binding and modify the catalytic pocket structure of the enzyme, as predicted by in silico analysis. Taken together, these data confirm the role of acetylation in regulating the activity of an enzyme from the glycolytic pathway of T. brucei, expanding the factors responsible for regulating important pathways in this parasite.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Glicólise/fisiologia , Lisina/metabolismo , Trypanosoma brucei brucei/metabolismo , Acetilação , Animais , Microcorpos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo
16.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118694, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32151656

RESUMO

Dot1 enzymes are histone methyltransferases that mono-, di- and trimethylate lysine 79 of histone H3 to affect several nuclear processes. The functions of these different methylation states are still largely unknown. Trypanosomes, which are flagellated protozoa that cause several parasitic diseases, have two Dot1 homologues. Dot1A catalyzes the mono- and dimethylation of lysine 76 during late G2 and mitosis, and Dot1B catalyzes trimethylation, which is a modification found in all stages of the cell cycle. Here, we generated Trypanosoma cruzi lines lacking Dot1B. Deletion of one allele resulted in parasites with increased levels of mono- and dimethylation and a reduction in H3K76me3. In the full knockout (DKO), no trimethylation was observed. Both the DKO and the single knockout (SKO) showed aberrant morphology and decreased growth due to cell cycle arrest after G2. This phenotype could be rescued by caffeine in the DKO, as caffeine is a checkpoint inhibitor of the cell cycle. The knockouts also phosphorylated γH2A without producing extensive DNA breaks, and Dot1B-depleted cells were more susceptible to general checkpoint kinase inhibitors, suggesting that a lack of H3K76 trimethylation prevents the initiation and/or completion of cytokinesis.


Assuntos
Doença de Chagas/genética , Histona-Lisina N-Metiltransferase/genética , Mitose/genética , Trypanosoma cruzi/genética , Ciclo Celular/genética , Doença de Chagas/parasitologia , Histonas/genética , Lisina/genética , Metilação/efeitos dos fármacos , Proteínas Nucleares/genética , Fosforilação/genética , Trypanosoma cruzi/patogenicidade
18.
J Leukoc Biol ; 106(3): 581-594, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31299112

RESUMO

Chronic lymphocytic leukemia (CLL) is a chronic form of leukemia that originates from an abnormal expansion of CD5+ B-1 cells. Deregulation in the BCR signaling is associated with B-cell transformation. Contrariwise to B-2 cells, BCR engagement in B-1 cells results in low proliferation rate and increased apoptosis population, whereas overactivation may be associated with lymphoproliferative disorders. It has been demonstrated that several transcription factors that are involved in the B cell development play a role in the regulation of BCR function. Among them, Ikaros is considered an essential regulator of lymphoid differentiation and activation. Several reports suggest that Ikaros expression is deregulated in different forms of leukemia. Herein, we demonstrated that CLL cells show decreased Ikaros expression and abnormal cytoplasmic cell localization. These alterations were also observed in radioresistant B-1 cells, which present high proliferative activity, suggesting that abnormal localization of Ikaros could determine its loss of function. Furthermore, Ikaros knockdown increased the expression of BCR pathway components in murine B-1 cells, such as Lyn, Blnk, and CD19. Additionally, in the absence of Ikaros, B-1 cells become responsive to BCR stimulus, increasing cell proliferation even in the absence of antigen stimulation. These results suggested that Ikaros is an important controller of B-1 cell proliferation by interfering with the BCR activity. Therefore, altered Ikaros expression in CLL or radioresistant B-1 cells could determine a responsive status of BCR to self-antigens, which would culminate in the clonal expansion of B-1 cells.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Leucêmica da Expressão Gênica , Fator de Transcrição Ikaros/genética , Leucemia Linfocítica Crônica de Células B/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos B/imunologia , Transformação Celular Neoplásica/patologia , Citoplasma/metabolismo , Feminino , Humanos , Fator de Transcrição Ikaros/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Biológicos , Ligação Proteica , Tolerância a Radiação , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
19.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987092

RESUMO

Benznidazole and nifurtimox, the only drugs available for the treatment of Chagas disease, have limited efficacy and have been associated with severe adverse side effects. Thus, there is an urgent need to find new biotargets for the identification of novel bioactive compounds against the parasite and with low toxicity. Silent information regulator 2 (Sir2) enzymes, or sirtuins, have emerged as attractive targets for the development of novel antitrypanosomatid agents. In the present work, we evaluated the inhibitory effect of natural compounds isolated from cashew nut (Anacardium occidentale, L. Anacardiaceae) against the target enzymes TcSir2rp1 and TcSir2rp3 as well as the parasite. Two derivates of cardol (1, 2), cardanol (3, 4), and anacardic acid (5, 6) were investigated. The two anacardic acids (5, 6) inhibited both TcSir2rp1 and TcSir2rp3, while the cardol compound (2) inhibited only TcSir2rp1. The most potent sirtuin inhibitor active against the parasite was the cardol compound (2), with an EC50 value of 12.25 µM, similar to that of benznidazole. Additionally, compounds (1, 4), which were inactive against the sirtuin targets, presented anti-T. cruzi effects. In conclusion, our results showed the potential of Anacardium occidentale compounds for the development of potential sirtuin inhibitors and anti-Trypanosoma cruzi agents.


Assuntos
Anacardium/química , Extratos Vegetais/farmacologia , Sirtuínas/antagonistas & inibidores , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estrutura Molecular , Testes de Sensibilidade Parasitária , Extratos Vegetais/química
20.
PLoS Negl Trop Dis ; 12(11): e0006875, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30422982

RESUMO

In Trypanosoma cruzi, the etiologic agent of Chagas disease, Rad51 (TcRad51) is a central enzyme for homologous recombination. Here we describe the different roles of TcRad51 in DNA repair. Epimastigotes of T. cruzi overexpressing TcRAD51 presented abundant TcRad51-labeled foci before gamma irradiation treatment, and a faster growth recovery when compared to single-knockout epimastigotes for RAD51. Overexpression of RAD51 also promoted increased resistance against hydrogen peroxide treatment, while the single-knockout epimastigotes for RAD51 exhibited increased sensitivity to this oxidant agent, which indicates a role for this gene in the repair of DNA oxidative lesions. In contrast, TcRad51 was not involved in the repair of crosslink lesions promoted by UV light and cisplatin treatment. Also, RAD51 single-knockout epimastigotes showed a similar growth rate to that exhibited by wild-type ones after treatment with hydroxyurea, but an increased sensitivity to methyl methane sulfonate. Besides its role in epimastigotes, TcRad51 is also important during mammalian infection, as shown by increased detection of T. cruzi cells overexpressing RAD51, and decreased detection of single-knockout cells for RAD51, in both fibroblasts and macrophages infected with amastigotes. Besides that, RAD51-overexpressing parasites infecting mice also presented increased infectivity and higher resistance against benznidazole. We thus show that TcRad51 is involved in the repair of DNA double strands breaks and oxidative lesions in two different T. cruzi developmental stages, possibly playing an important role in the infectivity of this parasite.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Protozoários/metabolismo , Rad51 Recombinase/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética , Animais , Doença de Chagas/parasitologia , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Humanos , Masculino , Camundongos , Estresse Oxidativo , Proteínas de Protozoários/genética , Rad51 Recombinase/genética , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA